OverviewThe E.Z.N.A.® Soil DNA Kit is formulated to isolate high purity cellular DNA from soil samples typically containing humic acid and other inhibitors of PCR. This kit uses a novel and proprietary method to isolate genomic DNA from a variety of environmental samples without organic extractions.This kit has been successfully used to isolate DNA from Gram-positive and -negative bacteria, fungi, yeast, and algae that inhabit a range of samples including clay, sandy, peaty, chalky, or loamy soil samples. Isolated DNA can be used for most downstream applications, including PCR, Southern blot, and NGS analysis.Reliable – Reproducible DNA purification from a variety of sample sourcesHigh quality – Ready-to-use DNA eliminating PCR inhibitors using proprietary inhibitor removal technologyYield – Efficient purification of DNA from even specialized samplesEase of use – Contains glass beads pre-filled in 2 mL vialsDNA purified from soil samples using E.Z.N.A.® Soil DNA Kit has higher and more consistent yield than using a leading competing product.Figure 1. Comparison of DNA extraction method from soil samples. DNA yield determined with fluorescence-based dye quantification. 50 µL ZymoBIOMICS™ Microbial Community Standard was added to 200 mg soil samples and DNA was extracted using manufacturer’s recommended protocols. DNA was eluted in 100 µL for both manufacturers.DNA purified from soil samples using E.Z.N.A.® Soil DNA Kit has better PCR performance than using a leading competing product.Figure 2. Comparison of Ct values. 20 µL SYBR Green qPCR reaction. 50 µL ZymoBIOMICS™ Microbial Community Standard was added to 200 mg soil samples and DNA was extracted using manufacturer’s recommended protocols. DNA was eluted in 100 µL for both manufacturers.E.Z.N.A.® Soil DNA Kit performs especially better for gram-positive bacteria than a leading competing product.Figure 3. DNA yield by bacterial classes. DNA yield determined with fluorescence-based dye quantification. 0.5 mL cultured Gram-positive and Gram-negative bacteria were added to corresponding 200 mg soil samples and DNA was extracted using manufacturer’s recommended protocols. DNA was eluted in 100 µL for both manufacturers.I left my cHTR reagent out at room temperature for a few days. Is it ok to use?We have stability data showing that the reagent is fine for three months at room temperature with no effect on quality. So it is ok to use. Please store at recommended temperature going forward.I noticed precipitates in the cHTR buffer- is that normal? It is also difficult to pipette.Precipitates are normal in cHTR. Please shake well before using and cut the pipette tip to help with aspiration.Bao, Yun-Juan, et al. \"High-Throughput Metagenomic Analysis of Petroleum-Contaminated Soil Microbiome Reveals the Versatility in Xenobiotic Aromatics Metabolism.” Journal of Environmental Sciences, vol. 56, 1 June 2017, pp. 25–35, www.sciencedirect.com/science/article/pii/S1001074216306155?casa_token=QXfnahukMoEAAAAA:H6xUoAHyfOBFs6fE1a0KcdKtiPZ53A_6EwwHMyW2uqsNhyydq52wc2CqS_UZCLFTCMB3hrpJ4yk, 10.1016/j.jes.2016.08.022. Accessed 1 June 2020.Bin, Zhang, et al. \"Dynamic and Distribution of Ammonia-Oxidizing Bacteria Communities during Sludge Granulation in an Anaerobic–Aerobic Sequencing Batch Reactor.” Water Research, vol. 45, no. 18, 15 Nov. 2011, pp. 6207–6216, www.sciencedirect.com/science/article/pii/S0043135411005458?casa_token=-Dxbvqho-9QAAAAA:yjdHqmoRGVk32viDMqj0l1K-hpelh9RhpMa2Z8PdTweLReQ7xB138QTS4LTnaUJIoLa_BBtHgno, 10.1016/j.watres.2011.09.026. Accessed 1 June 2020.Chen, Hong, et al. Effects of ammonia on anaerobic digestion of food waste: process performance and microbial community.  Energy Fuels 30.7 (2016): 5749-5757.Huang, Lu, et al. \"Antibiotic Resistance Genes (ARGs) in Duck and Fish Production Ponds with Integrated or Non-Integrated Mode.” Chemosphere, vol. 168, Feb. 2017, pp. 1107–1114, 10.1016/j.chemosphere.2016.10.096. Accessed 9 Apr. 2020.Liu, Chao, et al. \"The Effects of PH and Temperature on the Acetate Production and Microbial Community Compositions by Syngas Fermentation.” Fuel, vol. 224, 15 July 2018, pp. 537–544, www.sciencedirect.com/science/article/pii/S0016236118305337?casa_token=G8sFg1-lAY8AAAAA:vc4RvQIHqKFWs7GV4IYgsFbE19hHKG64wJa-VxHX2i4bWFeht1IvIjU2sKH_DqSD7k-vhD60_yE, 10.1016/j.fuel.2018.03.125. Accessed 1 June 2020.Liu, Shuang Ping, et al. \"Bacterial Succession and the Dynamics of Volatile Compounds during the Fermentation of Chinese Rice Wine from Shaoxing Region.” World Journal of Microbiology and Biotechnology, vol. 31, no. 12, 22 Oct. 2015, pp. 1907–1921, 10.1007/s11274-015-1931-1. Accessed 19 May 2020.Luo, Haiping, et al. \"Sulfate Reduction and Microbial Community of Autotrophic Biocathode in Response to Acidity.” Process Biochemistry, vol. 54, 1 Mar. 2017, pp. 120–127, www.sciencedirect.com/science/article/pii/S1359511316304482?casa_token=UsEoVQm9jdgAAAAA:K3y18r9pkFNEGbVXRhH9NYO2kn92gUTagQO4W9ne_7__4cREpqqMoMgpy3GTE4TGCsY2GmAOpUc, 10.1016/j.procbio.2016.12.025. Accessed 1 June 2020.Qin, Sijun, et al. \"Forage Crops Alter Soil Bacterial and Fungal Communities in an Apple Orchard.” Acta Agriculturae Scandinavica, Section B — Soil Plant Science, vol. 66, no. 3, Oct. 2015, pp. 229–236, 10.1080/09064710.2015.1088569. Accessed 1 June 2020.Sun, Zhenli, et al. \"Effects of BmCPV Infection on Silkworm Bombyx Mori Intestinal Bacteria.” PLOS ONE, vol. 11, no. 1, 8 Jan. 2016, p. e0146313, 10.1371/journal.pone.0146313. Accessed 1 June 2020.Wang, Honglei, et al. \"Distribution Patterns of Nitrogen Micro-Cycle Functional Genes and Their Quantitative Coupling Relationships with Nitrogen Transformation Rates in a Biotrickling Filter.” Bioresource Technology, vol. 209, 1 June 2016, pp. 100–107, www.sciencedirect.com/science/article/pii/S0960852416302656?casa_token=cLS57Ina4g8AAAAA:JNbvH3JnbxWoT94kv786jXpCfJCgxl6uJBxSB3lvU4fyXMw4NUfFrn8wCpB6M-PtoKIRRIZqzKc, 10.1016/j.biortech.2016.02.119. Accessed 1 June 2020.Wang, Wen, et al. \"Enhanced Fermentative Hydrogen Production from Cassava Stillage by Co-Digestion: The Effects of Different Co-Substrates.” International Journal of Hydrogen Energy, vol. 38, no. 17, 10 June 2013, pp. 6980–6988, www.sciencedirect.com/science/article/pii/S0360319913008525?casa_token=Yp5RO0rqkckAAAAA:TQ7GNvTa5EwFEgQpDmocPa28hj0Eq3LeR6esG9BZujRWKeb9Pl8UZnzwX4c64PKz2wRwp5I902E, 10.1016/j.ijhydene.2013.04.004. Accessed 1 June 2020.Zhang, Bin, et al. \"Microbial Population Dynamics during Sludge Granulation in an Anaerobic–Aerobic Biological Phosphorus Removal System.” Bioresource Technology, vol. 102, no. 3, 1 Feb. 2011, pp. 2474–2480, www.sciencedirect.com/science/article/pii/S0960852410018195?casa_token=xABqGAsRc00AAAAA:3-gK60wIYoio7fBqwmlb8OM2y3fRILBwWlBaemc0pz6_fZFumW9c9gC0xMmpg_gXkfTJspCIl6o, 10.1016/j.biortech.2010.11.017. Accessed 1 June 2020.Zhi, Wei, et al. Enhanced long-term nitrogen removal and its quantitative molecular mechanism in tidal flow constructed wetlands.  Environmental science technology 49.7 (2015): 4575-4583.Zhou, Min, et al. \"Evolution and Distribution of Resistance Genes and Bacterial Community in Water and Biofilm of a Simulated Fish-Duck Integrated Pond with Stress.” Chemosphere, vol. 245, 1 Apr. 2020, p. 125549, www.sciencedirect.com/science/article/pii/S0045653519327894?casa_token=fHNPjCLuBx0AAAAA:AgLxYXp1gUk5K-1Y2pEEZAU8BKUOB8t_P2NU_ZgPs7QGg70yoGzdaxrL-SvewC0Wsf7VBeflGec, 10.1016/j.chemosphere.2019.125549. Accessed 1 June 2020. . \"Spread of Resistance Genes from Duck Manure to Fish Intestine in Simulated Fish-Duck Pond and the Promotion of Cefotaxime and As.” Science of The Total Environment, vol. 731, 20 Aug. 2020, p. 138693, www.sciencedirect.com/science/article/pii/S0048969720322105, 10.1016/j.scitotenv.2020.138693. Accessed 1 June 2020. Cultured Cells and Tissue E-Z 96 Tissue DNA Kit Isolate DNA from tissues in 96-well plate format Blood and Bodily Fluids E.Z.N.A. Blood DNA Maxi Kit Isolate DNA from up to 20 mL blood using spin columns Cultured Cells and Tissue E.Z.N.A. Forensic DNA Kit Isolate DNA from forensic samples using spin columns Cultured Cells and Tissue E.Z.N.A. Tissue DNA Kit Isolate DNA from tissues, buccal swabs, cultured cells, whole blood, body fluids, paraffin-embedded tissues and mouse tail snips using mini spin columns Blood and Bodily Fluids E.Z.N.A. Blood DNA Mini Kit Isolate DNA from 1-250 µL whole blood using spin columns. Copyright 2021 © Omega Bio-tek, Inc. ISO 9001:2015 | For Reseach Use Only. Not for use in diagnostic procedures. Subscribe to our newsletter to stay up to date on the latest news and developments happening at Omega Bio-tekSubscribe Your personal data will be used to support your experience throughout this website, to manage access to your account, and for other purposes described in our privacy policy. Register